

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

1 FEM-Programm

1.1 Main()
%INIT
clear(); %Variablen löschen
clc(); %Konsole löschen
close all; %Plots schließen

%MAIN()--
 [iANZAHL_KNOTEN,aKNOTENKOORDINATEN,aSTABELEMENTE,aKNOTENLASTEN,aLAGERBEDINGUNGEN,sDATEINAME]=Datensatz_Einlesen();
 [aALPHA,aL,aEA,aSTABVERBINDUNGEN]=Stab_Eigenschaften(aSTABELEMENTE,aKNOTENKOORDINATEN);
 clear aSTABELEMENTE;
 aK_ges=Gesamtsteifigkeitsmatrix_Bilden(iANZAHL_KNOTEN,aSTABVERBINDUNGEN,aALPHA,aL,aEA,aLAGERBEDINGUNGEN);
 aF_ges=Elementlastvektor_Bilden(iANZAHL_KNOTEN,aKNOTENLASTEN);
 aU_ges=Cholesky_Verfahren(aK_ges,aF_ges);
 aN_ges=Kraftvektor_Ermitteln(aSTABVERBINDUNGEN,aU_ges,aALPHA,aL,aEA);
 Ergebnisse_Ausgeben(sDATEINAME,aU_ges,aN_ges);
 clear sDATEINAME;
 Verformung_Plotten(aSTABVERBINDUNGEN,aKNOTENKOORDINATEN,aU_ges,aN_ges,aL,aEA);
 clear aKNOTENKOORDINATEN;
%--

Verformung_Plotten()

Benötigt den Verschiebungsvektor u; den Normalkraftvektor N; die
Längen und Knotenverbindungen der Stäbe und die Knotenkoordinaten

Zeichnet das unverformte Fachwerk und unterlagert ein übertrieben
verformtes System mit eingefärbten Stäben nach N (0-100% = grün-rot)

Ergebnisse_Ausgeben()

Benötigt den Verschiebungsvektor u und den Normalkraftvektor N
Schreibt die eingelesene Textdatei in eine Ausgabetextdatei und hängt

die Ergebnisse der Verschiebungen un Normalkräfte am Ende an

Kraftvektor_Ermitteln()

Benötigt Lagewinkel; Länge; Steifigkeit und zugehörige Knoten der Stäbe
+ Verschiebungsvektor u

Errechnet aus den Spannungsmatrizen der Stabelemente den
Normalkraftvektor N

Cholesky_Verfahren()

Benötigt die symmetrische Matrix K und den Ergebnisvektor f Errechnet den Verschiebungsvektor u des Gleichungssystems 𝐾 ∙ 𝑢 = 𝑓

Elementlastvektor_Bilden()

Benötigt die Punkte und Richtungen der Lagerfixierungen Erstellt den Ergebnisvektor f des Gleichungssystems 𝐾 ∙ 𝑢 = 𝑓

Gesamtsteifigkeitsmatrix_Bilden()

Benötigt Lagewinkel; Länge; Steifigkeit und zugehörige Knoten der Stäbe
+ Lagerung

Bildet die Matrix K des Gleichungssystems inklusive Randbedingungen
𝐾 ∙ 𝑢 = 𝑓

Stab_Eigenschaften()

Benötigt alle Parameter-Arrays der Stäbe und Knoten errechnet dLagewinkel; Länge und Steifigkeit der Stäbe

Datensatz_Einlesen()

Liest die Textdatei mit den Daten ein
Speichert die Daten in Arrays zur Weiterverwendung ab und prüft

Vollständigkeit

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

1.2 Datensatz_Einlesen()
function [iANZAHL_KNOTEN,aKNOTEN,aSTABELEMENTE,aKNOTENLASTEN,aLAGERBEDINGUNGEN,sDATEINAME] = Datensatz_Einlesen()
 %KONFIGURATION---
 sSOLL(1)="Steuerdaten:";
 sSOLL(2)="Knoten:";
 sSOLL(3)="Stabelemente:";
 sSOLL(4)="Knotenlasten:";
 sSOLL(5)="Lagerbedingungen:";

 %ÖFFNEN_DER_TEXTDATEI--
 sDATEINAME = input('Geben Sie den Dateinamen mit den Steuerdaten ein (Dateityp: ".dat")\n','s');
 sDATEINAME = strcat(sDATEINAME,".dat");
 fhTEXTDATEI = fopen(sDATEINAME,'r');
 if (fhTEXTDATEI < 1)
 fprintf('%s konnte im Arbeitsverzeichnis nicht gefunden werden\nProgramm wird beendet\n',sDATEINAME);
 return;
 else
 fprintf('%s wurde geöffnet\n',sDATEINAME);
 fprintf('//---------------------------------\n');
 end

 %EINLESEN_DER_STEUERDATEN--
 %Steuerdaten
 frewind(fhTEXTDATEI);%Pointer zurücksetzen (beim ersten Mal unnötig -> egal)
 sZEILE="";
 while(sZEILE~=sSOLL(1))
 sZEILE=fgetl(fhTEXTDATEI);
 if(sZEILE==-1)
 fprintf('Formatierung in %s fehlerhaft!\n%s erwartet!\n',sDATEINAME,sSOLL(1));
 fprintf('//---------------------------------\n');
 return;
 end
 end
 for(i=1:1:3)%Weglesen der ***; Tabellenüberschriften und ---,-----
 sZEILE=fgetl(fhTEXTDATEI);
 end
 aSPEICHER=fscanf(fhTEXTDATEI,'%u',4);
 aSTEUERDATEN(1,1:4)=aSPEICHER.';

 %Knoten
 frewind(fhTEXTDATEI);
 sZEILE="";
 while(sZEILE~=sSOLL(2))
 sZEILE=fgetl(fhTEXTDATEI);
 if(sZEILE==-1)
 fprintf('Formatierung in %s fehlerhaft!\n%s erwartet!\n',sDATEINAME,sSOLL(2));
 fprintf('//---------------------------------\n');
 return;
 end
 end
 for(i=1:1:3)
 sZEILE=fgetl(fhTEXTDATEI);
 end
 i=1;
 while(1)
 iPOINTER=ftell(fhTEXTDATEI);
 sZEILE=fgetl(fhTEXTDATEI);
 iMERKER=0;
 for(j=1:1:size(sSOLL,2))
 if(sZEILE==sSOLL(j))
 iMERKER=1;
 end
 end
 if(iMERKER==1||strrep(strrep(sZEILE," ",""),"\t","")==""||sZEILE=="EOD")
 break;
 else
 fseek(fhTEXTDATEI,iPOINTER,'bof'); %Pointer zurücksetzen, weil ja Zeile zum Test schon eingelesen wurde
 aSPEICHER=fscanf(fhTEXTDATEI,'%f',3);
 aKNOTEN(i,1:3)=aSPEICHER.';
 fseek(fhTEXTDATEI,ftell(fhTEXTDATEI)+2,'bof'); %Überlesen des Zeilenumbruchs
 end
 i=i+1;
 end

 %Stabelemente
 frewind(fhTEXTDATEI);
 sZEILE="";
 while(sZEILE~=sSOLL(3))
 sZEILE=fgetl(fhTEXTDATEI);
 if(sZEILE==-1)
 fprintf('Formatierung in %s fehlerhaft!\n%s erwartet!\n',sDATEINAME,sSOLL(3));
 fprintf('//---------------------------------\n');
 return;
 end
 end
 for(i=1:1:3)
 sZEILE=fgetl(fhTEXTDATEI);
 end
 i=1;
 while(1)
 iPOINTER=ftell(fhTEXTDATEI);
 sZEILE=fgetl(fhTEXTDATEI);
 iMERKER=0;
 for(j=1:1:size(sSOLL,2))
 if(sZEILE==sSOLL(j))
 iMERKER=1;
 end
 end

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

 if(iMERKER==1||strrep(strrep(sZEILE," ",""),"\t","")==""||sZEILE=="EOD")
 break;
 else
 fseek(fhTEXTDATEI,iPOINTER,'bof');
 aSPEICHER=fscanf(fhTEXTDATEI,'%f',5);
 aSTABELEMENTE(i,1:5)=aSPEICHER.';
 fseek(fhTEXTDATEI,ftell(fhTEXTDATEI)+2,'bof');
 end
 i=i+1;
 end

 %Knotenlasten
 frewind(fhTEXTDATEI);
 sZEILE="";
 while(sZEILE~=sSOLL(4))
 sZEILE=fgetl(fhTEXTDATEI);
 if(sZEILE==-1)
 fprintf('Formatierung in %s fehlerhaft!\n%s erwartet!\n',sDATEINAME,sSOLL(4));
 fprintf('//---------------------------------\n');
 return;
 end
 end
 for(i=1:1:3)
 sZEILE=fgetl(fhTEXTDATEI);
 end
 i=1;
 while(1)
 iPOINTER=ftell(fhTEXTDATEI);
 sZEILE=fgetl(fhTEXTDATEI);
 iMERKER=0;
 for(j=1:1:size(sSOLL,2))
 if(sZEILE==sSOLL(j))
 iMERKER=1;
 end
 end
 if(iMERKER==1||strrep(strrep(sZEILE," ",""),"\t","")==""||sZEILE=="EOD")
 break;
 else
 fseek(fhTEXTDATEI,iPOINTER,'bof');
 aSPEICHER=fscanf(fhTEXTDATEI,'%f',3);
 aKNOTENLASTEN(i,1:3)=aSPEICHER.';
 fseek(fhTEXTDATEI,ftell(fhTEXTDATEI)+2,'bof');
 end
 i=i+1;
 end

 %Lagerbedingungen
 frewind(fhTEXTDATEI);
 sZEILE="";
 while(sZEILE~=sSOLL(5))
 sZEILE=fgetl(fhTEXTDATEI);
 if(sZEILE==-1)
 fprintf('Formatierung in %s fehlerhaft!\n%s erwartet!\n',sDATEINAME,sSOLL(5));
 fprintf('//---------------------------------\n');
 return;
 end
 end
 for(i=1:1:3)
 sZEILE=fgetl(fhTEXTDATEI);
 end
 i=1;
 while(1)
 iPOINTER=ftell(fhTEXTDATEI);
 sZEILE=fgetl(fhTEXTDATEI);
 iMERKER=0;
 for(j=1:1:size(sSOLL,2))
 if(sZEILE==sSOLL(j))
 iMERKER=1;
 end
 end
 if(iMERKER==1||strrep(strrep(sZEILE," ",""),"\t","")==""||sZEILE=="EOD")
 break;
 else
 fseek(fhTEXTDATEI,iPOINTER,'bof');
 aSPEICHER=fscanf(fhTEXTDATEI,'%f',3);
 aLAGERBEDINGUNGEN(i,1:3)=aSPEICHER.';
 fseek(fhTEXTDATEI,ftell(fhTEXTDATEI)+2,'bof');
 end
 i=i+1;
 end

 %SCHLIEßEN_DER_TEXTDATEI---
 fclose(fhTEXTDATEI);

 %AUFSTEIGENDE_SORTIERUNG_DER_TABELLEN_NACH_1.SPALTE--
 aKNOTEN=sortrows(aKNOTEN);
 aSTABELEMENTE=sortrows(aSTABELEMENTE);
 aKNOTENLASTEN=sortrows(aKNOTENLASTEN);
 aLAGERBEDINGUNGEN=sortrows(aLAGERBEDINGUNGEN);

 %PRÜFUNG_DER_EINGELESENEN_DATEN--
 %Initialisierung
 iANZAHL_KNOTEN=size(aKNOTEN,1);
 iANZAHL_STAEBE=size(aSTABELEMENTE,1);
 iANZAHL_LASTEN=size(aKNOTENLASTEN,1);
 iANZAHL_RANDBEDINGUNGEN=size(aLAGERBEDINGUNGEN,1);
 aSTEUERDATEN_IST(:)=[iANZAHL_KNOTEN,iANZAHL_STAEBE,iANZAHL_LASTEN,iANZAHL_RANDBEDINGUNGEN];
 sWARNUNG="Scotty, wir haben ein Problem mit den ";
 %Prüfung
 for(i=1:1:size(aSTEUERDATEN_IST,1))

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

 if(aSTEUERDATEN_IST(i)<aSTEUERDATEN(i))
 fprintf('%s%s!\n',sWARNUNG,sSOLL(i+1));
 fprintf('Es gibt zu wenig Zeileneinträge (%u) unter der Überschrift "%s"\n',aSTEUERDATEN_IST(i),sSOLL(1+1));
 fprintf('Laut "%s" (%u) erwartet!',sSOLL(1),aSTEUERDATEN(i));
 fprintf('Korrigieren Sie die Datei "%s" und starten Sie das Programm erneut!\n',sDATEINAME);
 return;
 elseif(aSTEUERDATEN_IST(1)>aSTEUERDATEN(1))
 fprintf('%s%s!\n',sWARNUNG,sSOLL(i+1));
 fprintf('Es gibt zu viele Zeileneinträge (%u) unter der Überschrift "%s"\n',aSTEUERDATEN_IST(i),sSOLL(1+1));
 fprintf('Laut "%s" (%u) erwartet!\n',sSOLL(1),aSTEUERDATEN(i));
 fprintf('Korrigieren Sie die Datei "%s" und starten Sie das Programm erneut!\n',sDATEINAME);
 return;
 end
 end
end

Die Funktion fragt den Namen der Textdatei ab, welche die Parametrierung der Berechnung enthält

und bersucht Sie zu öffnen. Sollte die Datei nicht im Arbeitsverzeichnis zu finden sind, so wird das

Programm beendet.

Nach erfolgreicher Öffnung liest das Programm solange zeilenweise die Datei ein bis einer der

Stichwortzeilen:

o „Steuerdaten:“

o „Knoten:“

o „Stabelemente:“

o „Knotenlasten:“

o „Lagerbedingungen:“

auftaucht. Aufgrund der Struktur der vorgegebenen Einlesedatei, werden stumpf zunächst 3 Zeilen

überlesen. Ab der Stelle wird immer eine Zeile eingelesen. Sollte das Dateiende, statt Werten

erreicht werden, so wird das Programm beendet. Sollte die Zeile (die ohne Zeilenumbruch übergeben

wird) nur aus Leerzeichen und Tabulatoren bestehen, so wird das Einlesen für die Stichwortzeile

abgebrochen. Andernfalls wird davon ausgegangen, dass es sich um Zahlenwerte handeln muss.

Hierzu wird der Pointer auf die Zeile zuvor zurückgesetzt (inklusive Offset 2 für den Zeilenumbruch)

und die Werte sukzessive in ein mit der Stichwortzeile gleichlautendes Array geschrieben.

Sind alle Stichwortzeilen abgearbeitet, wird die Textdatei geschlossen. Im nächsten Schritt erfolgt die

Überprüfung der angegebenen Steuerdaten mit der Zeilenanzahl der Stichwortzeilen

gleichlautenden Arrays. Weicht die Anzahl ab, werden entsprechende Anweisungen gegeben und das

Programm beendet.

Der eingegebene Name der Textdatei wird an die main() übergeben, um für die spätere Textausgabe

nocheinmal genutzt werden zu können.

1.3 Stab_Eigenschaften()
function [aALPHA,aL,aEA,aSTABVERBINDUNGEN] = Stab_Eigenschaften(aSTABELEMENTE,aKNOTENKOORDINATEN)
 %Koordinaten müssen in der Ausführung ausschließlich positiv sein
 %Probleme zu erwarten, wenn Knotennummerierung willkürlich geschieht
 for(i=1:1:size(aSTABELEMENTE,1))
 aALPHA(i,1)=aSTABELEMENTE(i,1);
 aL(i,1)=aSTABELEMENTE(i,1);
 aEA(i,1)=aSTABELEMENTE(i,1);
 aSTABVERBINDUNGEN(i,1)=aSTABELEMENTE(i,1);
 iANFANGSKNOTEN=min(aSTABELEMENTE(i,2),aSTABELEMENTE(i,3));
 iENDKNOTEN=max(aSTABELEMENTE(i,2),aSTABELEMENTE(i,3));
 dDELTA_X=aKNOTENKOORDINATEN(iENDKNOTEN,2)-aKNOTENKOORDINATEN(iANFANGSKNOTEN,2);
 dDELTA_Y=aKNOTENKOORDINATEN(iENDKNOTEN,3)-aKNOTENKOORDINATEN(iANFANGSKNOTEN,3);
 if(dDELTA_X==0)
 aALPHA(i,2)=atan(inf);
 elseif(dDELTA_Y==0)
 aALPHA(i,2)=0;
 else
 aALPHA(i,2)=atan(dDELTA_Y/dDELTA_X);
 end
 aL(i,2)=sqrt(dDELTA_X^2+dDELTA_Y^2);
 aEA(i,2)=aSTABELEMENTE(i,4)*aSTABELEMENTE(i,5);
 aSTABVERBINDUNGEN(i,2)=iANFANGSKNOTEN;
 aSTABVERBINDUNGEN(i,3)=iENDKNOTEN;
 end
end

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

Die Funktion führt eine Schleife für jeden Stab des Fachwerks aus. Dabei wird zunächst der

Anfangknoten 𝑘𝑖,𝐴𝑛𝑓𝑎𝑛𝑔 und der Endknoten 𝑘𝑖,𝐸𝑛𝑑𝑒 eines jeden Stabes ermittelt.

𝑘𝑖,𝐴𝑛𝑓𝑎𝑛𝑔 = min⁡(𝑘𝑖,1; 𝑘𝑖,2)

𝑘𝑖,𝐸𝑛𝑑𝑒 = max⁡(𝑘𝑖,1; 𝑘𝑖,2)

Dann wird die Länge der Stäbe und der Winkel über die Knotenkoordinaten berechnet. Sie werden in

jeweils eigene Arrays abgespeichert.

∆𝑥𝑖 = 𝑥(𝑘𝑖,𝐸𝑛𝑑𝑒) − 𝑥(𝑘𝑖,𝐴𝑛𝑓𝑎𝑛𝑔)

∆𝑦𝑖 = 𝑦(𝑘𝑖,𝐸𝑛𝑑𝑒) − 𝑦(𝑘𝑖,𝐴𝑛𝑓𝑎𝑛𝑔)

𝑙𝑖 = √∆𝑥𝑖
2 + ∆𝑦𝑖

22

𝛼𝑖 = tan
−1 (

∆𝑦

∆𝑥
)

Bildquelle: Fachwerksberechnung mit FEM I (Theorie) (Florian Grabner, HTBL-Kapfenberg) http://www.math-
tech.at/Beispiele/upload/gra_FachwerkmitFEM(I).PDF

Zur weiteren Vereinfachung wird das Produkt aus E-Modul und Querschnittsfläche in einem Array

abgespeichert.

𝐸𝐴𝑖 = 𝐸𝑖 ∙ 𝐴𝑖

Abschließend wird ein Array erzeugt in dem die Anfangsknoten 𝑘𝑖,𝐴𝑛𝑓𝑎𝑛𝑔 und Endknoten 𝑘𝑖,𝐸𝑛𝑑𝑒 den

Stäben zugeordnet werden. Dies führt dazu, dass das in der Funktion 𝐷𝑎𝑡𝑒𝑛𝑠𝑎𝑡𝑧_𝐸𝑖𝑛𝑙𝑒𝑠𝑒𝑛()

eingelesene Array für die Stabelemente gelöscht werden kann. Dies geschieht nachgelagert in in der

𝑚𝑎𝑖𝑛().

1.4 Gesamtsteifigkeitsmatrix_Bilden()
function [Return] = Gesamtsteifigkeitsmatrix_Bilden(iANZAHL_KNOTEN,aSTABVERBINDUNGEN,aALPHA,aL,aEA,aLAGERBEDINGUNGEN)
 %Initialisierung des Containers (Cell-Arrays)-----------------
 aVERBINDUNGSCONTAINER=cell(iANZAHL_KNOTEN);
 for(i=1:1:iANZAHL_KNOTEN)
 for(j=1:1:iANZAHL_KNOTEN)
 aVERBINDUNGSCONTAINER(i,j)={[0,0;0,0]};
 end
 end

 %Verbindungen der Knoten herstellen
 for(i=1:1:size(aSTABVERBINDUNGEN,1))
 j=aSTABVERBINDUNGEN(i,2);%Anfangsknoten
 k=aSTABVERBINDUNGEN(i,3);%Endknoten
 Speicher=Elementsteifigkeitsmatrix_Bilden(aEA,aL,aALPHA,i);
 aVERBINDUNGSCONTAINER(j,j)= {[...
 aVERBINDUNGSCONTAINER{j,j}(1,1)+Speicher(1,1), ...
 aVERBINDUNGSCONTAINER{j,j}(1,2)+Speicher(1,2); ...
 aVERBINDUNGSCONTAINER{j,j}(2,1)+Speicher(2,1), ...
 aVERBINDUNGSCONTAINER{j,j}(2,2)+Speicher(2,2) ...
]};
 aVERBINDUNGSCONTAINER(j,k)= {[...
 aVERBINDUNGSCONTAINER{j,k}(1,1)-Speicher(1,1), ...
 aVERBINDUNGSCONTAINER{j,k}(1,2)-Speicher(1,2); ...
 aVERBINDUNGSCONTAINER{j,k}(2,1)-Speicher(2,1), ...
 aVERBINDUNGSCONTAINER{j,k}(2,2)-Speicher(2,2) ...
]};
 aVERBINDUNGSCONTAINER(k,j)= {[...
 aVERBINDUNGSCONTAINER{k,j}(1,1)-Speicher(1,1), ...
 aVERBINDUNGSCONTAINER{k,j}(1,2)-Speicher(1,2); ...
 aVERBINDUNGSCONTAINER{k,j}(2,1)-Speicher(2,1), ...
 aVERBINDUNGSCONTAINER{k,j}(2,2)-Speicher(2,2) ...
]};
 aVERBINDUNGSCONTAINER(k,k)= {[...
 aVERBINDUNGSCONTAINER{k,k}(1,1)+Speicher(1,1), ...

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

 aVERBINDUNGSCONTAINER{k,k}(1,2)+Speicher(1,2); ...
 aVERBINDUNGSCONTAINER{k,k}(2,1)+Speicher(2,1), ...
 aVERBINDUNGSCONTAINER{k,k}(2,2)+Speicher(2,2) ...
]};
 end

 %Einbauen der Randbedingungen
 for(i=1:1:size(aLAGERBEDINGUNGEN,1))
 iKNOTEN=aLAGERBEDINGUNGEN(i,1);
 iTRANSLATIONSSPERRE=aLAGERBEDINGUNGEN(i,2);% 1 ist x, 2 ist y, gleiches gilt für die Cell-Array-Logik
 for(j=1:1:iANZAHL_KNOTEN)%Streichen in den Spalten des Containers
 aVERBINDUNGSCONTAINER{j,iKNOTEN}(1,iTRANSLATIONSSPERRE)=0;
 aVERBINDUNGSCONTAINER{j,iKNOTEN}(2,iTRANSLATIONSSPERRE)=0;
 end
 for(k=1:1:iANZAHL_KNOTEN)%Streichen in den Zeilen des Containers
 aVERBINDUNGSCONTAINER{iKNOTEN,k}(iTRANSLATIONSSPERRE,1)=0;
 aVERBINDUNGSCONTAINER{iKNOTEN,k}(iTRANSLATIONSSPERRE,2)=0;
 end
 aVERBINDUNGSCONTAINER{iKNOTEN,iKNOTEN}(iTRANSLATIONSSPERRE,iTRANSLATIONSSPERRE)=1;
 end

 %Explosion des Cell-Arrays in ein Array
 for(i=2:2:2*iANZAHL_KNOTEN)
 for(j=2:2:2*iANZAHL_KNOTEN)
 for(k=1:1:2)
 for(l=1:1:2)
 Return(i+k-2,j+l-2)=aVERBINDUNGSCONTAINER{i/2,j/2}(k,l);
 end
 end
 end
 end
end

Im ersten Schritt wird ein Cell-Array erstellt, dass auf der obersten Ebene so hoch und breit wie die

Anzahl der Knoten im System sind. Jede Zelle des Cell-Arrays wird mit einer null-gefüllten 2x2-Matrix

initialisiert.

Im nächsten Schritt wird die Gesamtsteifigkeitsmatrix 𝐾𝐾𝑔 ohne die Lagerbedingungen aufgebaut.

Die Elementsteifigkeitsmatrizen werden wie folgt in das Cell-Array verteilt. Entscheidend für die

Aufteilung jeder Elementsteifigkeitsmatrix eines Stabes ist der Anfangsknoten und der Endknoten. So

wird die grüne Elementsteifigkeitsmatrix für einen Stab, der mit den Knoten 1 und 3 verbunden ist,

wie in der Abbildung in das mit 0 initialisierte Cell-Array aufsummiert.

𝐾𝐸𝑖 =
𝐸𝑖 ∙ 𝐴𝑖
𝑙𝑖

∙ (
cos2(𝛼𝑖) sin(𝛼𝑖) ∙ cos(𝛼𝑖)

sin(𝛼𝑖) ∙ cos(𝛼𝑖) sin2(𝛼𝑖)
)

Bildquelle: Fachwerksberechnung mit FEM I (Theorie) (Florian Grabner, HTBL-Kapfenberg) http://www.math-
tech.at/Beispiele/upload/gra_FachwerkmitFEM(I).PDF

Nachfolgend werden die Randbedingungen der Lagerung in die Gesamtsteifigkeitsmatrix eingebaut.

Gesperrte Translationen eines Knotens führen dazu, dass die zur Translation dazugehörigen Spalten

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

und Zeilen zu 0 gesetzt werden. Am Schnittpunkt der Spalten und Zeilen (dem Diagonalenelement)

wird die Zelle zu 1 gesetzt.

Schlussendlich wird das Cellarray zu einer Matrix, der Gesamtsteifigkeitsmatrix, explodiert.

1.4.1 Elementsteifigkeitsmatrix_Bilden()
function [Return] = Elementsteifigkeitsmatrix_Bilden(aEA,aL,aALPHA,stabindex)
 Return=zeros(2,2);
 %Funktion nur verlässlich wenn Arrayindex mit Stabindex übereinstimmt
 Return(1,1)=((cos(aALPHA(stabindex,2))^2) *aEA(stabindex,2))/aL(stabindex,2);
 Return(1,2)=(sin(aALPHA(stabindex,2))*cos(aALPHA(stabindex,2)) *aEA(stabindex,2))/aL(stabindex,2);
 Return(2,1)=(sin(aALPHA(stabindex,2))*cos(aALPHA(stabindex,2)) *aEA(stabindex,2))/aL(stabindex,2);
 Return(2,2)=((sin(aALPHA(stabindex,2))^2) *aEA(stabindex,2))/aL(stabindex,2);
 dSCHRANKE=0.00000001;
 if(abs(Return(1,1))<dSCHRANKE)
 Return(1,1)=0;
 end
 if(abs(Return(1,2))<dSCHRANKE)
 Return(1,2)=0;
 end
 if(abs(Return(2,1))<dSCHRANKE)
 Return(2,1)=0;
 end
 if(abs(Return(2,2))<dSCHRANKE)
 Return(2,2)=0;
 end
end

Die Elementsteifigkeitsmatrix bereitet folgende Rechnung für die Implementierung in die

Gesamtsteifigkeitsmatrix vor:

𝐾𝐸𝑖 =
𝐸𝑖 ∙ 𝐴𝑖
𝑙𝑖

∙ (
cos2(𝛼𝑖) sin(𝛼𝑖) ∙ cos(𝛼𝑖)

sin(𝛼𝑖) ∙ cos(𝛼𝑖) sin2(𝛼𝑖)
)

Abschließend werden sehr kleine Werte um 0 herum zu 0 gesetzt. Leider führt die Matlab-interne

Rechnung des Sinus aus
𝜋

2
 zu Werten knapp größer als 0. Diese unsaubere Lösung wurde eingeführt,

um die Gesamtsteifigkeitsmatrix besser debuggen zu können. Sie wird durch die falschen Ergebnisse

sonst verfälscht und schlecht lesbar.

1.5 Elementlastvektor_Bilden()
function [Return] = Elementlastvektor_Bilden(iANZAHL_KNOTEN,aKNOTENLASTEN)
 Return=zeros(2*iANZAHL_KNOTEN,1);
 for(i=1:1:size(aKNOTENLASTEN,1))
 iKNOTEN=aKNOTENLASTEN(i,1);
 iRICHTUNG=aKNOTENLASTEN(i,2);%1 = x-Richtung, 2 = y-Richtung
 Return(2*iKNOTEN+iRICHTUNG-2)=aKNOTENLASTEN(i,3);
 end
end

In dieser Funktion werden ie angegebenen Lasten in folgender Vektorform 𝑓 aufgereiht:

𝑓 =

(

𝐹1,𝑥
𝐹1,𝑦
⋮
𝐹𝑖,𝑥
𝐹𝑖,𝑦)

1.6 Cholesky_Verfahren()
function [Return] = Cholesky_Verfahren(aA,aB)
 %PRUEFUNG--
 iANZAHL_GLEICHUNGEN = size(aA,1); %Gibt die Anzahl an Zeilen zurück (Parameter 1)
 iANZAHL_WERTE = size(aA,2); %Gibt die Anzahl der Spalten zurück
 if(iANZAHL_GLEICHUNGEN<iANZAHL_WERTE)
 fprintf("Scotty, wir haben ein Problem!\n");
 fprintf("Es gibt weniger Gleichungen als Unbekannte!\n");
 return; %Hoffe das beendet das Skript vorzeitig
 end
 if(issymmetric(aA)) %ist das gleiche wie if(aA==aA.')
 fprintf("Matrix ist symmetrisch\n");
 else
 fprintf("Scotty, wir haben ein Problem!\n");
 fprintf("Matrix ist nicht symmetrisch\n");

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

 Return=Gauss_Verfahren(aA,aB);
 return;
 end

 %R_ZERLEGUNG---
 aR=zeros(iANZAHL_GLEICHUNGEN,iANZAHL_WERTE); %Initialisierung einer 0-Matrix
 for(i=1:1:iANZAHL_GLEICHUNGEN)
 for(j=i:1:iANZAHL_WERTE %die Spalte j startet mit jedem Durchlauf bei dem Wert der Zeile i
 %Bearbeitung der Diagonal-Lümmel
 Zwischenspeicher=0;
 for(k=1:1:i-1)
 Zwischenspeicher=Zwischenspeicher+(aR(k,i)^2);
 end
 aR(i,i)=(aA(i,i)-Zwischenspeicher)^0.5;
 if((aA(i,i)-Zwischenspeicher) <= 0)
 fprintf("Matrix ist nicht positiv definit!\n");
 fprintf("Geprüft an: R(%u,%u) = %f\n",i,i,(aA(i,i)-Zwischenspeicher));

 Return=Gauss_Verfahren(aA,aB);
 return; %Ich hoffe das Programm bricht dadurch ab
 else
 fprintf("Postive Definitheit an Stelle: R(%u,%u) = %f erfolgreich geprüft\n",i,i,(aA(i,i)-Zwischenspeicher));
 end
 %Bearbeitung der Nicht-Diagnonal-Lümmel
 Zwischenspeicher = 0;
 for(k=1:1:i-1)
 Zwischenspeicher=Zwischenspeicher+(aR(k,i)*aR(k,j));
 end
 aR(i,j)=(aA(i,j)-Zwischenspeicher)/aR(i,i);
 end
 end
 aRT=aR'; %Erzeugung der transponierten Matrix -> alternativ auch aRT=aR.';

 %VORWÄRTSAUFLÖSUNG---
 for(i=1:1:iANZAHL_GLEICHUNGEN)
 Zwischenspeicher=0;
 for(j=1:1:i-1)
 Zwischenspeicher=Zwischenspeicher+(aRT(i,j)*aY(j));
 end
 aY(i)=(aB(i)-Zwischenspeicher)/aRT(i,i);
 end

 %RÜCKWÄRTSAUFLÖSUNG--
 for(i=iANZAHL_GLEICHUNGEN:-1:1)
 Zwischenspeicher=0;
 for(j=i+1:1:iANZAHL_WERTE)
 Zwischenspeicher=Zwischenspeicher+(aR(i,j)*aX(j));
 end
 aX(i)=(aY(i)-Zwischenspeicher)/aR(i,i);
 end
 aX=aX.';
 Return=aX(1:end);
end

Das Cholesky-Verfahren wurde gewählt, weil die Gesamtsteifigkeitsmatrizen symmetrisch sind.

Zusammen mit dem Elementlastvektor (Ergebnisvektor), kann die Verschiebung 𝑢 errechnet werden.

𝐾 ∙ 𝑢 = 𝑓

Sollte die Matrix nicht symmetrisch sein oder an einer Stelle nicht positiv definit sein, wird versucht

das Gleichungssystem per Gauß-Verfahren zu lösen.

1.7 Kraftvektor_Ermitteln()
function [Return] = Kraftvektor_Ermitteln(aSTABVERBINDUNGEN,aU_ges,aALPHA,aL,aEA);
 for(i=1:1:size(aSTABVERBINDUNGEN,1))
 Anfangsknoten=aSTABVERBINDUNGEN(i,2);
 Endknoten=aSTABVERBINDUNGEN(i,3);
 Zwischenspeicher(1:2,1:2)=[1,-1;-1,1];
 aK=(aEA(i,2)/aL(i,2))*Zwischenspeicher;
 aT(1:2,1:4)=[cos(aALPHA(i,2)),sin(aALPHA(i,2)),0,0;0,0,cos(aALPHA(i,2)),sin(aALPHA(i,2))];
 dSCHRANKE=0.00000001;
 if(abs(aT(1,1))<dSCHRANKE)
 aT(1,1)=0;
 end
 if(abs(aT(1,2))<dSCHRANKE)
 aT(1,2)=0;
 end
 if(abs(aT(2,3))<dSCHRANKE)
 aT(2,3)=0;
 end
 if(abs(aT(2,4))<dSCHRANKE)
 aT(2,4)=0;
 end
 aU(1:2,1)=aU_ges((2*Anfangsknoten)-1:(2*Anfangsknoten),1);
 aU(3:4,1)=aU_ges((2*Endknoten)-1:(2*Endknoten),1);
 Zwischenspeicher=aK*aT*aU;
 Zwischenspeicher=Zwischenspeicher';
 dSCHRANKE=0.00000001;
 if(abs(Zwischenspeicher(1,1))<dSCHRANKE)
 Zwischenspeicher(1,1)=0;
 end
 if(abs(Zwischenspeicher(1,2))<dSCHRANKE)

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

 Zwischenspeicher(1,2)=0;
 end
 Return(i,1)=i;
 Return(i,2:3)=Zwischenspeicher;
 end
end

Zur Ermittlung der Normalkräfte wird zunächst die Elementsteifigkeitsmatrix eines Stabes im lokalen

Koordinatensystem gebildet:

𝐾𝑖 =
𝐸𝑖 ∙ 𝐴𝑖
𝑙𝑖

∙ (
1 −1
−1 1

)

Außerdem wird eine Transformationsmatrix für das globale Koordinatensystem benötigt:

𝑇𝑖 = (
cos(∝𝑖) sin(∝𝑖) 0 0

0 0 cos(∝𝑖) sin(∝𝑖)
)

Da in Matlab-internen Berechnungen der Sinus von 90° zu einem Ergebnis knapp über 0 führt, wird

das Ergebnis um eine enge Schranke auf 0 gesetzt. Dies ist unsauber, aber die Werte verfälschen

systematisch die Lösung. Hier sollte nach einer Alternative gesucht werden.

Die Normalkraft errechnet sich schließlich, wenn die lokale Elementsteifigkeitsmatrix mit der

Transformationsmatrix und den globalen Verschiebungen der Stabknotenpunkte multipliziert

werden:

𝑁𝑖 = 𝐾𝑖 ∙ 𝑇𝑖 ∙ 𝑢𝑖

1.8 Ergebnisse_Ausgeben()
function [] = Ergebnisse_Ausgeben(sDATEINAME,aU_ges,aN_ges)
 %KOPIE_DER_EINLESEDATEI_SPEICHERN--
 fhTEXTDATEI = fopen(sDATEINAME,'r');
 sEINLESEDATEN=fread(fhTEXTDATEI);
 fclose(fhTEXTDATEI);

 %AUSGABETEXTDATEI_ANLEGEN_UND_BESCHREIBEN--
 %Initialisierung
 cDATEINAME=char(sDATEINAME);
 while(1)
 cCHAR=cDATEINAME(size(cDATEINAME,2));
 cDATEINAME=cDATEINAME(1:end-1);
 if(cCHAR=='.')
 break;
 end
 end
 sDATEINAME=strcat(cDATEINAME,".erg");
 fhTEXTDATEI = fopen(sDATEINAME,'w+');
 fprintf(fhTEXTDATEI,'%s\n',sEINLESEDATEN);
 sTRENNSTRICH="//---";
 cWERTAUSGABEFORMAT='%.8f';
 fprintf(fhTEXTDATEI,'\n\n\n');
 fprintf(fhTEXTDATEI,'%s\n',sTRENNSTRICH);
 %Verschiebungen
 fprintf(fhTEXTDATEI,'Verschiebungen: \n');
 fprintf(fhTEXTDATEI,'Knoten\t\t\tUx\t\t\t\tUy\n');
 for(i=2:2:size(aU_ges,1))
 cTEXT=strcat('%u\t\t\t\t',cWERTAUSGABEFORMAT,'\t\t',cWERTAUSGABEFORMAT,'\n');
 fprintf(fhTEXTDATEI,cTEXT,i/2,aU_ges(i-1),aU_ges(i));
 end
 fprintf(fhTEXTDATEI,'\n');
 %Stabkräfte
 fprintf(fhTEXTDATEI,'Stabkräfte: \n');
 fprintf(fhTEXTDATEI,'Stab\t\t\tN\n');
 for(i=1:1:size(aN_ges,1))
 cTEXT=strcat('%u\t\t\t\t',cWERTAUSGABEFORMAT,'\n');
 fprintf(fhTEXTDATEI,cTEXT,aN_ges(i,1),aN_ges(i,3));
 end
 fprintf(fhTEXTDATEI,'%s\n',sTRENNSTRICH);

 %SCHLIEßEN_DER_AUSGABETEXTDATEI--
 fclose(fhTEXTDATEI);
end

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

Zunächst wird der aus dem Einlesevorgang übergebene Dateiname nocheinmal genutzt und die Datei

komplett auf einen String eingelesen und danach geschlossen.

Dann wird der Dateiname von der Endung befreit und mit der Endung „.dat“ versehen. Eine neue

Datei wird angelegt und der zuvor eingelesene String hineinkopiert.

Unter die Eingangsdaten werden dann die Verschiebungen und Stabkräfte aufgereiht.

1.9 Verformung_Plotten()
function [] = Verformung_Plotten(aSTABVERBINDUNGEN,aKNOTENKOORDINATEN,aU_ges,aN_ges,aL,aEA)
 rgbUNVERFORMT=[0.5 0.5 0.5];
 iKNOTENDURCHMESSER=125;
 dSKALIERUNG=(10/max(abs(aU_ges(:))))*max(aL(:));
 dKRAFTMAXIMUM=max(abs(aN_ges(:,2)));
 dSTEIFIGKEITSMAXIMUM=max(aEA(:,2));
 for(i=1:1:size(aSTABVERBINDUNGEN,1))
 dKRAFT_IN_PROZENT=abs(aN_ges(i,2))/dKRAFTMAXIMUM;
 rgbVERFORMT(1:3)=[0+dKRAFT_IN_PROZENT 1-dKRAFT_IN_PROZENT 0];
 dLINIENSTAERKE=(aEA(i,2)/dSTEIFIGKEITSMAXIMUM)*2;
 iANFANGSKNOTEN=aSTABVERBINDUNGEN(i,2);
 iENDKNOTEN=aSTABVERBINDUNGEN(i,3);
 X(i,1:2)=[...
 aKNOTENKOORDINATEN(iANFANGSKNOTEN,2)+(aU_ges((2*iANFANGSKNOTEN)-1)*dSKALIERUNG), ...
 aKNOTENKOORDINATEN(iENDKNOTEN,2)+(aU_ges((2*iENDKNOTEN)-1)*dSKALIERUNG) ...
];
 Y(i,1:2)=[...
 aKNOTENKOORDINATEN(iANFANGSKNOTEN,3)+(aU_ges((2*iANFANGSKNOTEN))*dSKALIERUNG), ...
 aKNOTENKOORDINATEN(iENDKNOTEN,3)+(aU_ges(2*iENDKNOTEN)*dSKALIERUNG) ...
];
 plot(...
 X(i,1:2),Y(i,1:2), ...
 'color',rgbVERFORMT, ...
 'LineWidth', dLINIENSTAERKE ...
);
 hold on;
 scatter(...
 X(i,1:2),Y(i,1:2), ...
 iKNOTENDURCHMESSER,'o', 'filled', ...
 'MarkerEdgeColor',rgbVERFORMT,...
 'MarkerFaceColor',[1 1 1],...
 'LineWidth',1.5 ...
);
 hold on;
 end
 for(i=1:1:size(aSTABVERBINDUNGEN,1))
 iANFANGSKNOTEN=aSTABVERBINDUNGEN(i,2);
 iENDKNOTEN=aSTABVERBINDUNGEN(i,3);
 X(i,1:2)=[aKNOTENKOORDINATEN(iANFANGSKNOTEN,2),aKNOTENKOORDINATEN(iENDKNOTEN,2)];
 Y(i,1:2)=[aKNOTENKOORDINATEN(iANFANGSKNOTEN,3),aKNOTENKOORDINATEN(iENDKNOTEN,3)];
 plot(...
 X(i,1:2),Y(i,1:2), ...
 'color',rgbUNVERFORMT, ...
 'LineWidth',dLINIENSTAERKE ...
);
 hold on;
 scatter(...
 X(i,1:2),Y(i,1:2), ...
 iKNOTENDURCHMESSER,'o', 'filled', ...
 'MarkerEdgeColor',rgbUNVERFORMT,...
 'MarkerFaceColor',[1 1 1],...
 'LineWidth',1.5 ...
);
 hold on;
 text(...
 X(i,1)-(iKNOTENDURCHMESSER/2),Y(i,1), ...
 cellstr(string(iANFANGSKNOTEN)), ...
 'color',rgbUNVERFORMT ...
);
 hold on;
 text(...
 X(i,2)-(iKNOTENDURCHMESSER/2),Y(i,2), ...
 cellstr(string(iENDKNOTEN)), ...
 'color',rgbUNVERFORMT ...
);
 hold on;
 end
 axis('equal'); %Seitenverhältnis 1:1
 title('Verschiebung'); %Überschrift
 xlabel('x'); %Achsenbeschriftung x
 ylabel('y'); %Achsenbeschriftung y
end

Die Darstellung der Stäbe erfolgt über 2D-Linienplot. Die Knoten werde diesen mit Punktplot

(gefüllten Kreise) überlagert. Die Dicke der Stäbe wird über die Steifigkeitsnormierung umgesetzt und

mit einem konstanten Faktor multipliziert:

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

𝑡𝑖 = 𝐹𝑎𝑘𝑡𝑜𝑟 ∙
𝐸𝑖 ∙ 𝐴𝑖

max
1≤𝑖≤𝑖𝑚𝑎𝑥

(𝐸𝑖 ∙ 𝐴𝑖) ⁡
= {0,… , 𝐹𝑎𝑘𝑡𝑜𝑟}

Das unverformte Fachwerk wird grau 𝑟𝑔𝑏𝑢𝑛𝑣𝑒𝑟𝑓𝑜𝑟𝑚𝑡 ⁡= {⁡0,5; ⁡0,5; ⁡0,5} eingefärbt. Für das

verformte Fachwerk wird die Stabkraft normiert:

𝐹𝑖,𝑛𝑜𝑟𝑚𝑖𝑒𝑟𝑡 =
𝐹𝑖

max
1≤𝑖≤𝑖𝑚𝑎𝑥

(𝐹𝑖) ⁡
= {0,… ,1}

Die Belastung der Stäbe wird dann mit den Farben rot und grün dargestellt:

𝑟𝑔𝑏𝑣𝑒𝑟𝑓𝑜𝑟𝑚𝑡,𝑖 ⁡= {⁡0 + 𝐹𝑖,𝑛𝑜𝑟𝑚𝑖𝑒𝑟𝑡; ⁡1 − 𝐹𝑖,𝑛𝑜𝑟𝑚𝑖𝑒𝑟𝑡; ⁡0}

Für die verformte Darstellung wird zunächst die Verschiebung mit einem Faktor 𝑓𝑆𝑘𝑎𝑙𝑖𝑒𝑟𝑢𝑛𝑔

vergrößert, um sie besser sichtbar zu machen. Der Faktor 𝑓𝑆𝑘𝑎𝑙𝑖𝑒𝑟𝑢𝑛𝑔 entsteht durch das Verhältnis

der größten Verformung zur größten Länge, multipliziert mit einer Konstante:

𝑓𝑆𝑘𝑎𝑙𝑖𝑒𝑟𝑢𝑛𝑔 = 𝐹𝑎𝑘𝑡𝑜𝑟 ∙
max

1≤𝑖≤𝑖𝑚𝑎𝑥
|𝑢𝑖|

max
1≤𝑖≤𝑖𝑚𝑎𝑥

(𝐿𝑖)

Den ursprünglichen x,y-Koordinaten des Fachwerks werden nun die verlängerten Verschiebungen

aufaddiert.

𝑋𝑌𝑣𝑒𝑟𝑓𝑜𝑟𝑚𝑡,𝑖 = (
𝑋𝑢𝑛𝑣𝑒𝑟𝑓𝑜𝑟𝑚𝑡,𝑖 + 𝑓𝑆𝑘𝑎𝑙𝑖𝑒𝑟𝑢𝑛𝑔 ∙ 𝑢𝑥,𝑖
𝑌𝑢𝑛𝑣𝑒𝑟𝑓𝑜𝑟𝑚𝑡 , 𝑖 + 𝑓𝑆𝑘𝑎𝑙𝑖𝑒𝑟𝑢𝑛𝑔 ∙ 𝑢𝑦,𝑖

)

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

2 Verifikation

2.1 Auflagerreaktionen und Stabkräfte

Berechnung der Auflagerreaktionen

Formeln

Quantitative Größen

𝐹𝐴𝑥 = 50000𝑁
𝐹𝐴𝑦 = 100000𝑁

𝑎 = 4𝑚

∑𝑀𝑖𝐴 = 0 = −(𝑎 ∙ 𝐹𝐴𝑥) − (𝑎 ∙ 𝐹𝐴𝑦) + (2 ∙ 𝑎 ∙ 𝐹𝐵𝑦)

⇒

𝐹𝐵𝑦 =
50000𝑁 + 100000𝑁

2

⇒ 𝐹𝐵𝑦 =
(𝑎 ∙ 𝐹𝐴𝑥) + (𝑎 ∙ 𝐹𝐴𝑦)

2 ∙ 𝑎
 ⇒ 𝐹𝐵𝑦 = 75000𝑁

∑𝐹𝑖𝑦 = 0 = 𝐹𝐴𝑦 + 𝐹𝐵𝑦 − 𝐹𝑦 𝐹𝐴𝑦 = 100000𝑁 − 75000𝑁

⇒ 𝐹𝐴𝑦 = 𝐹𝑦 − 𝐹𝐵𝑦 ⇒ 𝐹𝐴𝑦 = 25000𝑁

∑𝐹𝑖𝑥 = 0 = 𝐹𝐴𝑥 + 𝐹𝑥
𝐹𝐴𝑥 = −50000𝑁

⇒ 𝐹𝐴𝑥 = −𝐹𝑥

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

Ermittlung der Nullstäbe
(Quelle: Technische Mechanik 1 | Statik (Gross, Hauger, Schröder, Wall), 14.Auflage S. 151)

① Sind an einem unbelasteten Knoten zwei Stäbe angeschlossen, die nicht in gleicher Richtung
liegen („unbelasteter Zweischlag“), so sind beide Stäbe Null-stäbe […].

o Stab [6] ist ein Nullstab 𝑆6 = 0𝑁
o Stab [9] ist ein Nullstab 𝑆9 = 0𝑁

② Sind an einem belasteten Knoten zwei Stäbe angeschlossen und greift die äußere Kraft in
Richtung des einen Stabes an, so ist der andere Stab ein Nullstab […].

o Stab [1] ist ein Nullstab 𝑆1 = 0𝑁

③ Sind an einem unbelasteten Knoten drei Stäbe angeschlossen, von denen zwei in gleicher
Richtung liegen, so ist der dritte Stab ein Nullstab […].

o Stab [5] ist ein Nullstab 𝑆5 = 0𝑁

Stab [1] 𝑆1 = 0𝑁 Nullstab Hinweis

Stab [2] 𝑆2 = −50000𝑁 Druckstab ∝= tan−1 (
𝑎

𝑎
) = 45°

sin(45°) = cos(45°) =
√2
2

2

√2
2

2
=
√2
2

2
∙
√2
2

√2
2 =

1

√2
2

Stab [3] 𝑆3 = −35355𝑁 Druckstab

Stab [4] 𝑆4 = 75000𝑁 Zugstab

Stab [5] 𝑆5 = 0𝑁 Nullstab

Stab [6] 𝑆6 = 0𝑁 Nullstab

Stab [7] 𝑆7 = −106066𝑁 Druckstab

Stab [8] 𝑆8 = 75000𝑁 Zugstab

Stab [9] 𝑆9 = 0𝑁 Nullstab

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

Knoten 1

∑𝐹𝑖𝑦 = 0 = 𝑆1

∑𝐹𝑖𝑥 = 0 = 𝐹𝑥 + 𝑆2

⇒ 𝑆2 = −𝐹𝑥

⇒ 𝑆2 = −50000𝑁

Knoten 2

∑𝐹𝑖𝑦 = 0 = 𝐹𝐴𝑦 + 𝑆1 +
𝑆3

√2
2

⇒ 𝑆3 = (−𝐹𝐴𝑦 − 𝑆1) ∙ √2
2

∑𝐹𝑖𝑥 = 0 = 𝐹𝐴𝑥 + 𝑆4 +
𝑆3

√2
2

⇒ 𝑆4 = −
𝑆3

√2
2 − 𝐹𝐴𝑥

⇒ 𝑆3 = (−25000𝑁 − 0𝑁) ∙ √2
2

⇒ 𝑆3 = −35355𝑁

⇒ 𝑆4 = −−
35355𝑁

√2
2 −−50000𝑁

⇒ 𝑆4 = 75000𝑁

Knoten 4

∑𝐹𝑖𝑦 = 0 =𝑆5

∑𝐹𝑖𝑥 = 0 = −𝑆4 + 𝑆8

⇒ 𝑆8 = 𝑆4

⇒ 𝑆8 = 75000𝑁

Knoten 6

∑𝐹𝑖𝑦 = 0 =𝑆9 +
𝑆7

√2
2 + 𝐹𝐵𝑥

∑𝐹𝑖𝑥 = 0 = − 𝑆8 −
𝑆7

√2
2

⇒ 𝑆7 = √2
2
∙ −𝑆8

⇒ 𝑆7 = −106066𝑁

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

2.2 Verformung in y am Knoten 4 mit dem Prinzip der Virtuellen Kräfte (PvK)
Zur Bestimmung der vertikalen Verformung wird an dem Punkt 𝑗 die Virtuelle Kraft 𝐹𝑗 eingebracht, zu

𝐹𝑗 = 1̅.

Virtuelle Auflagerreaktionen

∑𝐹𝑖𝑥 = 0 =𝐹𝐴𝑥

⇒ 𝐹𝐴𝑥 = 0

∑𝑀𝑖𝐴 = 0 =(2 ∙ 𝑎 ∙ 𝐹𝐵𝑦)

− (1̅ ∙ 𝑎)

⇒ 𝐹𝐵𝑦 =
1̅ ∙ 𝑎

2 ∙ 𝑎

⇒ 𝐹𝐵𝑦 =
1

2

̅

∑𝐹𝑖𝑦 = 0 =𝐹𝐴𝑦 + 𝐹𝐵𝑦 − 1̅

⇒ 𝐹𝐴𝑦 = 1̅ − 𝐹𝐵𝑦 = 1̅ −
1

2

̅
=
1

2

̅

⇒ 𝐹𝐴𝑦 =
1

2

̅

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

Stabkräfte mit virtueller 𝐹𝑗

Knoten 1

∑𝐹𝑖𝑥 = 0 = 𝐹𝐴𝑥 + 𝑆4 +
𝑆3

√2
2

∑𝐹𝑖𝑦 = 0 = 𝐹𝐴𝑦 + 𝑆1 +
𝑆3

√2
2

Knoten 2

∑𝐹𝑖𝑥 = 0 = 𝑆2

∑𝐹𝑖𝑦 = 0 = −𝑆1

⇒ 𝑆2 = 0

⇒ 𝑆1 = 0

Knoten 3

∑𝐹𝑖𝑥 = 0 = −𝑆4 + 𝑆8

∑𝐹𝑖𝑦 = 0 = 𝑆5 − 1̅

⇒ 𝑆4 = 𝑆8 =
1

2

̅

⇒ 𝑆5 = 1̅

Knoten 4

∑𝐹𝑖𝑥 = 0 = −𝑆2 + 𝑆6 −
𝑆3

√2
2 +

𝑆7

√2
2

∑𝐹𝑖𝑦 = 0 = −𝑆5 −
𝑆3

√2
2 −

𝑆7

√2
2

⇒ 𝑆3 =
𝑆7

√2
2 ∙ √2

2
= 𝑆7 = −

1

2

̅
∙ √2
2

→ 𝑎𝑙𝑙𝑒𝑠⁡𝑏𝑒𝑘𝑎𝑛𝑛𝑡

Knoten 5

∑𝐹𝑖𝑥 = 0 = −
𝑆7

√2
2 −𝑆8

∑𝐹𝑖𝑦 = 0 =𝑆9 +
𝑆7

√2
2 + 𝐹𝐵𝑦

⇒ 𝑆8 = −
𝑆7

√2
2 = −

1

√2
2 ∙ −

1

2

̅
∙ √2
2

=
1

2

̅

⇒ 𝑆7 = −𝐹𝐵𝑦 ∙ √2
2

= −
1

2

̅
∙ √2
2

Knoten 6

∑𝐹𝑖𝑥 = 0 = − 𝑆6

∑𝐹𝑖𝑦 = 0 = −𝑆4

⇒ 𝑆6 = 0

⇒ 𝑆9 = 0

⇓

Auflistung der virtuellen Stabkräfte

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9

0 0 −
1

2

̅
∙ √2
2

1

2

̅
 1̅ 0 −

1

2

̅
∙ √2
2

1

2

̅
 0

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

Arbeitssatz PvK:

1̅ ∙ 𝑓𝑖𝑘 = ∫(
𝑁̅𝑖 ∙ 𝑁𝑘
𝐸 ∙ 𝐴

)𝑑𝑥

𝑙

0

+∫(
𝑀̅𝑖 ∙ 𝑀𝑘
𝐸 ∙ 𝐴

)𝑑𝑥

𝑙

0

+∫(
𝑇̅𝑖 ∙ 𝑇𝑘
𝐸 ∙ 𝐴

)𝑑𝑥

𝑙

0

Da keine Moment- oder Torsionskomponenten anliegen fallen das Integral 2 & 3 weg. Die
Normalkraft im Fachwerk ergibt sich aus der/den Stabkräften, somit wird 𝑁 ⟼ 𝑆. Die
Verschiebungen 𝑓 werden stets in Richtungen der Stäbe angegeben 𝑓 ⟼ 𝑢.

1̅ ∙ 𝑢 = ∫(
𝑆𝑖̅ ∙ 𝑆𝑘
𝐸 ∙ 𝐴

)𝑑𝑥

𝑙

0

⇒ 1̅ ∙ 𝑢 =
1

𝐸 ∙ 𝐴
∙ ∫(𝑁̅𝑖 ∙ 𝑁𝑘)𝑑𝑥

𝑙

0

Die Ergebnisse der in Aufgabe 2.1 errechnenten Stabkräfte 𝑆𝑘 und die zuvor errechneten virtuellen

Stabkräfte 𝑆𝑖̅ sind in folgender Tabelle aufgeführt:

𝑗 𝑆𝑘 𝑆𝑖̅ 𝑆𝑖̅ ∙ 𝑆𝑘 𝑙

1 0 0 0 𝑎

2 −𝐹𝑥 0 0 𝑎

3 (−
𝐹𝑦

2
+
𝐹𝑥
2
) ∙ √2

2
 −

1

2

̅
∙ √2
2

 (𝐹𝑦 − 𝐹𝑥) ∙
1

2

̅
 √2

2
∙ 𝑎

4
𝐹𝑦

2
+
𝐹𝑥
2

1

2

̅
 (𝐹𝑦 + 𝐹𝑥) ∙

1

4

̅
 𝑎

5 0 1̅ 0 𝑎

6 0 0 0 𝑎

7 (−
𝐹𝑦

2
+
𝐹𝑥
2
) ∙ √2

2
 −

1

2

̅
∙ √2
2

 (𝐹𝑦 − 𝐹𝑥) ∙
1

2

̅
 √2

2
∙ 𝑎

8
𝐹𝑦

2
+
𝐹𝑥
2

1

2

̅
 (𝐹𝑦 + 𝐹𝑥) ∙

1

4

̅
 𝑎

9 0 0 0 𝑎

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

Das ergibt für :

𝑗 = 1 0𝑘𝑁 ∙ 5𝑚 = 0𝑘𝑁𝑚

𝑗 = 2 0𝑘𝑁 ∙ 5𝑚 = 0𝑘𝑁𝑚

𝑗 = 3 (100𝑘𝑁 − 50𝑘𝑁) ∙
1

2

̅
∙ √2
2
∙ 5𝑚 = 176,7766953𝑘𝑁𝑚

𝑗 = 4 (100𝑘𝑁 + 50𝑘𝑁) ∙
1

4

̅
∙ 5𝑚 = 187,5000000𝑘𝑁𝑚

𝑗 = 5 0𝑘𝑁 ∙ 5𝑚 = 0𝑘𝑁𝑚

𝑗 = 6 0𝑘𝑁 ∙ 5𝑚 = 0𝑘𝑁𝑚

𝑗 = 7 (100𝑘𝑁 − 50𝑘𝑁) ∙
1

2

̅
∙ √2
2
∙ 5𝑚 = 530,3300859𝑘𝑁𝑚

𝑗 = 8 (100𝑘𝑁 + 50𝑘𝑁) ∙
1

4

̅
∙ 5𝑚 = 187,5000000𝑘𝑁𝑚

𝑗 = 9 0𝑘𝑁 ∙ 5𝑚 = 0𝑘𝑁𝑚

 ∑∫(𝑁̅𝑖 ∙ 𝑁𝑘)𝑑𝑥

𝑙

0

= 1082,106781𝑘𝑁𝑚

Die Dehnsteifigkeit ist für alle Rundstäbe gleich und ergibt sich aus dem gegebenen E-Modul und

dem angegebenen Durchmesser:

𝐸 = 210000
𝑁

𝑚𝑚2

𝑑 = 10𝑚𝑚

𝐸 ∙ 𝐴 = 𝐸 ∙
𝜋 ∙ 𝑑2

4
 ⇒ 𝐸 ∙ 𝐴 = 210000

𝑁

𝑚𝑚2
∙
𝜋 ∙ 102 ∙ 𝑚𝑚2

4

⇒ 𝐸 ∙ 𝐴 = 16443361,43𝑁

Damit kann nun die Verschiebung errechnet werden:

1̅ ∙ 𝑢 =
1

𝐸 ∙ 𝐴
∙ ∫(𝑁̅𝑖 ∙ 𝑁𝑘)𝑑𝑥

𝑙

0

⇒ 𝑢 =
1

16443361,43𝑁
∙
1082,106781𝑘𝑁𝑚

1̅

⇒ 𝑢 = 0,065608𝑚 = 65,608𝑚𝑚

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

2.3 FEM-Programm Knotenverformungen und Stabkräfte
Normalkräfte Verschiebungen

Stab 𝑁⁡[𝑁] Knoten 𝑢𝑥 ⁡[𝑚𝑚] 𝑢𝑦⁡[𝑚𝑚]

1 0.00000000 1 59.36022994 0.00000000
2 −50000.00000000 2 0.00000000 0.00000000
3 −35355.33905933 3 44.19492815 −65.64190362
4 75000.00000000 4 22.74795268 −65.64190362
5 0.00000000 5 44.19492815 0.00000000
6 0.00000000 6 45.49590537 0.00000000
7 −106066.01717798
8 75000.00000000
9 0.00000000

Abbildung 2.1: Antwort des FEM-Programms mit ≈100-fach übertriebener Verschiebung

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

2.4 Vergleich Handrechnung mit FEM. Warum müssen sie exakt übereinstimmen?
Vergleich der Stabkräfte:

Aufgab
e

Normalkraft in Stab [kN]

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9

𝐴⁡2.1 0,0000 −50,0000 −35,3553 75,0000 0,0000 0,0000 −106,066 75,0000 0,0000

𝐴⁡2.3 0,0000 −50,0000 −35,3553 75,0000 0,0000 0,0000 −106,066 75,0000 0,0000

Vergleich der vertikalen Verschiebung

Aufgabe In Punkt j (Knoten K3/K4)

𝑢𝑦⁡[𝑚𝑚]
𝐴⁡2.2 65,60862597
𝐴⁡2.3 −65,64190362

Der Vorzeichenwechsel basiert auf einer anderen Festlegung, jedoch bewegen sich beide

Verschiebungen nach unten! Die Abweichung in der 2ten Nachkommastelle kommen durch

Rundungsfehler zu Stande. Sie werden daher als exakt angesehen.

Sie müssen auch exakt übereinstimmen, da hier ein Stabwerk und dessen Stabkräfte berechnet

werden, in dem die Stäbe bzw. die Stabkräfte die Finiten Elemente mit hinreichender Größe /

Genauigkeit wiederspiegeln.

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

3 Anwendungsbeispiel

3.1 Verformungen aller Knoten und aller Stab-Kräfte
𝐹 = 5000𝑁 𝑆6 = −115000,0000𝑁 𝑆7 = 113333,3333𝑁 𝑆8 = 5270,4627𝑁

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

3.2 Verifikation drei beliebiger Stabkräfte mit dem Ritterschnittverfahren

Berechnung der Auflagerreaktionen

Formeln

Quantitative Größen

𝐹 = 5000𝑁
𝑎 = 0,5𝑚
𝑏 = 1,5𝑚

∑𝑀𝑖𝐴 = 0 = −(70 ∙ 𝑎 ∙ 𝐹) + (𝑏 ∙ 𝐹𝐵𝑦)

⇒

𝐹𝐵𝑦 =
70 ∙ 0,5𝑚 ∙ 5000𝑁

1,5𝑚

⇒ 𝐹𝐵𝑦 =
70 ∙ 𝑎 ∙ 𝐹

𝑏

⇒ 𝐹𝐵𝑦 = 116666, 6̅𝑁

∑𝐹𝑖𝑦 = 0 =𝐹𝐴𝑦 + 𝐹𝐵𝑦

⇒ 𝐹𝐴𝑦 = −116666, 6̅𝑁
⇒ 𝐹𝐴𝑦 = −𝐹𝐵𝑦

∑𝐹𝑖𝑥 = 0 = 𝐹𝐴𝑥 + 𝐹

⇒ 𝐹𝐴𝑥 = −5000𝑁
⇒ 𝐹𝐴𝑥 = −𝐹

Thorsten Wollny 70316173
Alexander König 70012769

Florian Franke 70406476

System 1 System 2

∑𝑀𝑖,𝑎 = 0 =𝑏 ∙ 𝑆6 + 𝑏 ∙ 𝐹𝐵𝑦 + 𝑎 ∙ 𝐹𝐴𝑥

⇒ 𝑆6 = −𝐹𝐵𝑦 −
𝑎 ∙ 𝐹𝐴𝑥
𝑏

⇒ 𝑆6 = −116666, 6̅𝑁 −
0,5𝑚 ∙ −5000𝑁

1,5𝑚

⇒ 𝑆6 = −115000𝑁

∑𝑀𝑖,𝑐 = 0 = − 𝑏 ∙ 𝑆6 − (69 ∙ 𝑎 ∙ 𝐹)

⇒ 𝑆6 = −
69 ∙ 𝑎 ∙ 𝐹

𝑏

⇒ 𝑆6 = −
69 ∙ 0,5𝑚 ∙ 5000𝑁

1,5𝑚

⇒ 𝑆6 = −115000𝑁

∑𝑀𝑖,𝑏 = 0 = − 𝑏 ∙ 𝐹𝐴𝑦 − 𝑏 ∙ 𝑆7 + (2 ∙ 𝑎 ∙ 𝐹𝐴𝑥)

⇒ 𝑆7 = −𝐹𝐴𝑦 +
2 ∙ 𝑎 ∙ 𝐹𝐴𝑥

𝑏

⇒ 𝑆7 = −− 116666, 6̅𝑁 +
2 ∙ 0,5𝑚 ∙ −5000𝑁

1,5𝑚

⇒ 𝑆7 = 113333, 3̅𝑁

∑𝑀𝑖,𝑑 = 0 =𝑏 ∙ 𝑆7 − (68 ∙ 𝑎 ∙ 𝐹)

⇒ 𝑆7 =
68 ∙ 𝑎 ∙ 𝐹

𝑏

⇒ 𝑆7 =
68 ∙ 0,5𝑚 ∙ 5000𝑁

1,5𝑚

⇒ 𝑆7 = 113333, 3̅𝑁

𝛼 = tan−1 (
𝑎

𝑏
)

⇒ 𝛼 = tan−1 (
0,5𝑚

1,5𝑚
) = 18,4°

∑𝐹𝑖,𝑦 =0 = 𝐹𝐴𝑦 + 𝐹𝐵𝑦 + 𝑆6 + 𝑆7 + sin(𝛼) ∙ 𝑆8

⇒ 𝑆8 =
−𝐹𝐵𝑦 − 𝐹𝐴𝑦 − 𝑆6 − 𝑆7

sin (tan−1 (
𝑎
𝑏
))

⇒ 𝑆8 = −
116667𝑁

sin(18,4°)
−
−116667𝑁

sin(18,4°)
−
−115000𝑁

sin(18,4°)

−
113333𝑁

sin(18,4°)
= 5271,5𝑁

𝛼 = tan−1 (
𝑎

𝑏
)

⇒ 𝛼 = tan−1 (
0,5𝑚

1,5𝑚
) = 18,4°

∑𝐹𝑖,𝑦 =0 = 𝑆6 + 𝑆7 + sin(𝛼) ∙ 𝑆8

⇒ 𝑆8 =
−𝑆6 − 𝑆7

sin (tan−1 (
𝑎
𝑏
))

⇒ 𝑆8 = −
−115000𝑁

sin(18,4°)
−
113333𝑁

sin(18,4°)

= 5271,5𝑁

	1 FEM-Programm
	1.1 Main()
	1.2 Datensatz_Einlesen()
	1.3 Stab_Eigenschaften()
	1.4 Gesamtsteifigkeitsmatrix_Bilden()
	1.4.1 Elementsteifigkeitsmatrix_Bilden()

	1.5 Elementlastvektor_Bilden()
	1.6 Cholesky_Verfahren()
	1.7 Kraftvektor_Ermitteln()
	1.8 Ergebnisse_Ausgeben()
	1.9 Verformung_Plotten()

	2 Verifikation
	2.1 Auflagerreaktionen und Stabkräfte
	2.2 Verformung in y am Knoten 4 mit dem Prinzip der Virtuellen Kräfte (PvK)
	2.3 FEM-Programm Knotenverformungen und Stabkräfte
	2.4 Vergleich Handrechnung mit FEM. Warum müssen sie exakt übereinstimmen?

	3 Anwendungsbeispiel
	3.1 Verformungen aller Knoten und aller Stab-Kräfte
	3.2 Verifikation drei beliebiger Stabkräfte mit dem Ritterschnittverfahren

